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Abstract. The asymptotic behaviour of an energy level of the anharmonic oscillator with 
the anharmonicity A x z k  was obtained by the coherent states method. 

1. Introduction 

The anharmonic oscillator problem was studied by a number of authors in various 
aspects. Simon (1970), Bender (1970) and Bender and Wu (1969, 1973) have 
considered the analyticity properties of the energy level E , @ )  as a function of the 
coupling constant A for the Hamiltonian H = $ ( p 2 + x 2 ) + A x 4 .  In particular, it has 
been shown in these works that the energy levels of the Ax4 anharmonic oscillator 
satisfy the condition 

1 4 /3  1/3  E ( A ) - ( n  +d A 

for complex A. 
Within the framework of the quasiclassical approach Lakshmanan (1973), 

Lakshmanan and Prabhakaran (1973) and Mathews and Eswaran (1972) have found 
approximate formulae for the Ax4 +px6 ,  px6 and Ax4 anharmonic oscillators, respec- 
tively. 

Numerical calculations of energy levels have been performed by Biswas et a1 
(1971, 1973) for the anharmonic oscillator with anharmonicity A x ~ ~ ( O < A  S 50) and 
the energy level has been shown to be proportional to 

A l / ( k + l )  1 2 k / ( k + l )  (n  +$ 9 n = 0 , 1 , 2  , . . . ,  k = l , 2  , . . . .  
Halpern (1973) has considered the problem of the Ax4 anharmonic oscillator on the 
basis of non-linear canonical transformations of the eigenfunction basis of the cor- 
responding Hamiltonian. The space of Fock-Bargmann representations has been 
used by Hioe and Montroll(l975) and Hioe et a1 (1976) to investigate the anharmonic 
potentials x2+Ax4 and x 2 + A x Z k .  

The anharmonic oscillator problem is of interest both from the physical viewpoint 
(models of nuclear potentials, non-linear oscillator models of particles, etc) and from 
the pure mathematical one. We concentrate our attention on some mathematical 
aspects of this problem. The purpose of this work is to consider the Ax2& anharmonic 
oscillator on the basis of a combination of methods used by Halpern (1973), Hioe and 
Montroll (1975), Hioe et a1 (1976) and the coherent states method, which has been 
used widely in various fields of theoretical physics in recent years. 
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In 8 2, we introduce a non-linear canonical transformation of the eigenfunctions 
for the usual harmonic oscillator Hamiltonian. This is done to find an appropriate 
basis formed by the transformed functions in which it is convenient to use pertur- 
bation theory. The unitary operator U of such a transformation can be defined and, 
as a result, the problem of calculating the matrix elements of the Hamiltonian H in the 
basis of the harmonic oscillator eigenfunctions reduces to a familiar problem, but for 
the transformed Hamiltonian 11 = UCHU. 

The coherent states method can be applied to the calculation of the matrix 
elements of the Hamiltonian U’HU in first-order perturbation theory. Section 3 
contains the definition of the coherent states of the one-dimensional harmonic oscil- 
lator and some of their properties are established (Glauber 1963, Man’ko 1.972). 

In 8 4, we describe briefly the essence of the saddle-point method. This method 
enables the integrals contained in the corresponding expressions for the matrix ele- 
ments to be calculated (Evgrafov 1968, Evgrafov and Postnikov 1970 and Doktorov 
et a1 1975). 

The matrix elements of the transformed Hamiltonian A and the asymptotic 
expression for the energy levels of the AxZk anharmonic oscillator are obtained in 8 5. 
In this section, we also consider the particular cases of the anharmonic oscillators with 
the potentials x 2  + Ax4 and x2  + px6. The expressions for the energy levels obtained 
are shown to be analogous to those obtained by Halpern (1973), Lakshmanan and 
Prabhakaran (1973) and Mathews and Eswaran (1972). 

2. Canonical transformation 

The problem we consider is to obtain the solution of the eigenvalue problem 

H‘k”$(x) = Eq+(x) (2.1) 

H ‘ k ) ( ~ ,  p )  = +(p’ + x ’) + Axzk = Ho(x, p )  + A x  2 k  (2.2a) 

where 

Ho(x,p)=+(P2+x2),  p=- id fdx .  (2.2b) 

For convenience we deal with the units system in which rZ = c = 1, and for simplicity let 
mass and frequency be equal to unity: m = R = 1. Let $ ‘ ( x )  be the eigenfunction for 
the Hamiltonian (2.26) of the harmonic oscillator 

Ho(x, P ) $ O ( X )  = E $ O ( X ) .  (2.3) 
It is easy to check that the functions $ n ( ~ )  and $:(x) satisfy the following asymptotic 
conditions for x + CO: 

(Ln(x)- exp(-ak IxIkC1), a k  =&(k +I)-’ ( 2 . 4 ~ )  

$:(x) - exp(- t x ’ ) .  (2.4b) 

We must define here a unitary operator U and obtain a new complete orthonormal set 
of functions xn(x) 

Xn(X)= U$:(x> (2.5) 
the asymptotic behaviour of which is the same as that of the functions $”(x). It has 
been shown (Halpern 1973) that such an operator exists and it can be determined by 
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the relation 

from which it follows by comparing ( 2 . 4 ~ )  and (2.46) that: 

X + a  

x + o  
( 2 . 7 ~ )  
(2.76) 

where f = g-’ is the inverse function. The function f ( x )  can be chosen in the form 

11” (2.8) s 2 / ( k + l ) -  
f s m  ( x )  = [(I + w Ix I 1 

with the condition sm = 1. That f s m ( x )  satisfies the relations ( 2 . 7 ~ )  and (2.76) can be 
verified directly. Here w is an arbitrary positive constant. The simplest form of the 
function f s m ( x )  seems to be obtained at s = m = 1,  i.e. 

(2.9) 2 / ( k + l ) -  1. 
f ( x ) = f l l ( X ) =  (1 +wlx l> 

(Note that Halpern (1973) has considered the case s = 2, m = 4 for the Ax4 anharmonic 
oscillator.) The function f ( x )  (2.9) determines the operator U in equations (2.5) and 
(2.6) to within a factor w > O .  Owing to the fact that the functions & ( x )  and 
,yn(x)=  U$:(X) are of the same asymptotic behaviour it appears more convenient to 
apply perturbation theory to the problem studied by using the set of the functions 
,yn(x)  rather than that of t.,b:(x). It turns out that we must operate with the trans- 
formed Hamiltonian 

f i ( k )  = U + H ( k ) U  (2.10) 

in the old basis of the functions (L; (x ) .  The explicit form of the transformed Hamil- 
tonian is analogous to that given by Halpern (1973) and it can be represented as 
follows: 

f i ‘ k ’ ( ~ , p ) = ~ ~ k ) ( x , m ) + ~ k ( x , p )  (2.1 1) 

where 

HF’ (x ,  m>= ( P ( x ) )  ( 2 k - 2 ) / ( k + l ) ( a  + b x 2 )  ( 2 . 1 2 ~ )  

1 I’ 2 / ( k + l ) -  Ix I) + t [ ( P  ( x  )) ( 2 k - 2 ) / ( k + l ) ( l  + 2 
L k  (X, P )  = A F k  (X )  + A (CL (X)) 

and the following designations are used: 

@ ( x ) =  l + w ( x l  

and 

(2.13) 

(2.14) 

In deriving equation ( 2 . 1 2 ~ )  the relation p 2 =  ( p 2 + x 2 ) - x 2  has been used and the 
Hamiltonian (2.26) obtained has been replaced by its eigenvalue ( m  +;), because we 
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have dealt with the basis of its eigenfunctions I,!IL(x). It can be proved easily that in 
the oscillator basis the matrix elements of the operators of type x a p b  are of the form 
n ( a + b ) / 2 ,  where n is a quantum number (Halpern 1973). Hence, if we restrict 
ourselves only to first-order perturbation theory, we must operate with that part of the 
Hamiltonian (2.11) which is the maximum power of ~ ( x ) .  This part is of the form 
(2 .12~) .  The contribution of the matrix elements of the operator L k ( X ,  p )  to those of 
the operator is different from the contribution of the Hik)  matrix elements by the 
factor n-’ ,  where n is a quantum number, and consequently the operator &(x, p )  can 
be ignored. Note that within the framework of the method suggested all the Hamil- 
tonian (2.1 1) can be considered in the same way, when all orders of perturbation 
theory are used. 

EL: = ( ( f i f k ) l m ) =  (nlHik’(x, m)lm)[l +O(m-’)], In)= $On(x> (2.15) 

where Hik’ is of the form ( 1 . 1 2 ~ )  and I,!IE(x) are the eigenfunctions of the harmonic 
oscillator Hamiltonian. The expression (2.15) can be transformed by using the 
coherent states method. 

Finally, we wish to obtain the matrix elements 

3. Coherent states of the harmonic oscillator 

The functions of the coherent states la) are the eigenfunctions of the annihilation 
operator a = 2-”’(x + ip) 

ala)  = ala) (3.1) 
where a is a complex number. The set of the functions la) forms the overcomplete 
non-orthogonal basis (Glauber 1963, Man‘ko 1972). This means that there is some 
integral dependence between two functions la) and I@) (Glauber 1963). The basis 
non-orthogonality is determined by the inner product which can be chosen in the form 

(aIp)=exp(a*p - ~ / a [ ’ - & ~ ~ * ) .  

The explicit expression of the function is of the form 

(3.2) 
la) = r -1/4 exp(-ta2 -$la 1’) exp(- 4x’ + axJ2) .  

According to Galuber (1963), the matrix elements of an operator M in the coherent 
basis (alMIp) can be expanded in a Taylor series in powers of a* and p with the 
expansion coefficients 

c,, = (n!m!)-’/’(nJM/m) (3.3) 

~ ( a * ,  P )  = ( ~ I M I P )  exp(b12+41P12) 

where In) $:(x). The function 

(3.4) 

can easily be proved to be the analytic function of two variables a* and p (Glauber 
1963). Hence we can use the well known integral formula for the Taylor series 
coefficients: 

where c is the contour of integration which goes round the origin of the coordinate 
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system. We use the operator Hik)  (2.12a)  instead of the operator M in equations 
(3.3)-(3.5) and we obtain an expression for the matrix elements determined by 
the relation (2.15): 

where 
G(a* ,  P )  = (a \Hik) ( x ,  m)lP> exp($la l 2  +31Pl2). (3.7) 

Since there are quadratic exponents in the integrands (3.6), all the integrals in x ,  a* 
and p converge and the sequence of integrations can be altered. First, the integrals in 
a* and /3 have to be calculated by an asymptotic method. 

4. The saddle-point method 

The saddle-point method (Evgrafov and Postnikov 1968, Doktorov et a1 1975) is used 
to calculate integrals of the form 

where 1 is a large complex number, p is the space dimension, c is a contour of 
integration the ends of which do not contribute significantly to the integral, + ( z )  and 
f ( z )  are the analytic functions. In fact, this method consists of two steps. First, the 
contour of integration c is deformed in an appropriate way and the new contour E is 
such that on it the condition Imf(z)=O is satisfied. The contributions from a set of 
saddle points can then be found by the usual Laplace method (Evgrafov 1968). The 
saddle-point method for n-dimensional integrals has been developed by Evgrafov and 
Postnikov (1970). Finally, we formulate the conditions which the function f(z) must 
satisfy: 

(i) grad f ( z )  = 0 

(iii) He f ( z o )  # 0 
(ii) Re[d2f(z)],,,,< 0 (4.2) 

for each saddle point 20. Here Hef(zo) is the Hessian of the function f(z) at the 
saddle point 20: 

It is also assumed that + ( z )  changes sufficiently slowly near zo. If the conditions (4.2) 
are satisfied, the general contribution of each saddle point to the integral (4.1) will be 
of the form 

$(1) = ( - 2 ~ / l ) " ~  exp(lf(zo))(He f (z0) ) -"~4(~~) .  

@(1)= $(1)[1+ O ( P ) ] .  (4.5) 

(4.4) 
More specifically 

The quantity $ ( I )  (4.4) is the first term of an asymptotic series and $ ( l )  is valid for 
large values of 1. For our purpose, only the first term $(1) must be calculated, as 
follows from equation (4.5). 
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5. Matrix elements 

Let us apply the saddle-point method to the calculation of the matrix elements of the 
form (3.6). Combining equations (3.6) and (3.7) the formula for the matrix elements 
can be rewritten as follows: 

where the two-dimensional integral in a* and p is equal to 

and the Hamiltonian Hik'(x, m) given by the relationship ( 2 . 1 2 ~ )  does not depend on 
the momentum operator p. Using (4.2) we obtain for the function 

f (a  *, p )  = - ;(a*)2 - 3pZ - n In a * - m In p 

a1.2 = G exp(*i4,(x)) ~ 1 . 2  = &i exp(*i4,(x)) (5.4) 

(5.3) 
two sets of the saddle points 

where 

cos #Js(x)= x(2s)-'I2, s = n , m  

Ix I < J2 min(n, m) 

and when the case p = 2 in equation (4.4) is used, the term $(I) is equal to the sum 
I,,,(x) of the contributions from two sets (aT.2, pl,z) of saddle points, i.e. it follows 
from formula (5.2) that 

where 

We have obtained formula ( 5 . 5 )  by using the function If(z)=f(a*, p )  (5.3) in equa- 
tions (4.3)-(4.5). The well known Stirling formula has aIso been used: 

n = e-"n [I + ~(n-')]. 
Putting x < 4 2  max(n, m) or x > +J2 max(n, m), from the conditions (4.2) we find 
that there are three sets of saddle points, namely 

a3 ,4=  J;;exp(-&,(-x)*iitr) ~ 3 , ~  = &exp(-&,(-x)*i.rr) (5.7) 

for the interval x < 4 2  max(n, m) and 

a5 = G exp(-&(x)) p5 = & exp(-&(x)) (5  *8) 
for the interval x > v'2 max(n, m). Here cosh &(x) = x ( ~ s ) - " ~ ,  s = n, m. We obtain 
by comparison of the relations (5.4), (5.7) and (5.8) that, first, the points 
1x1 = d 2  min(n, m) divide the x axis into an oscillating region at 1x1 d v'2 min(n, m) 
and exponentially decreasing regions if 1x1 > d2 min(n, m) and, second, the points 
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1x1 = J2 max(n, m )  divide the latter regions into pure exponentially decreasing sub- 
regions in which there are only saddle points of the forms (5.7) or (5.8) 
(-a < x < -J2  max(n, m ) ,  d2 max(n, m ) <  x < +a), and subregions in which there 
are saddle points of the form (5.4) and those of the forms (5.7) or (5.8) 
( 4 2  max(n, m ) < x  < 4 2  min(n, m ) ,  J2  min(n, m ) < x  c J2  max(n, m) ) .  

It is easy to show, by inspection of the sets of saddle points (5.7) and (5.8) in the 
exponentially decreasing regions, that the contributions from these saddle points are 
exponentially small and can be ignored. Finally, only the term I n m ( x )  (5.5) gives a 
substantial contribution to the expression for the matrix elements (5.1). This formula 
can be rewritten by using the explicit form of the In,,,(x) (5.5): 

where &,,,(x) and Hbk’(x, m )  are given by equations (5.6) and ( 2 . 1 2 ~ )  respectively. 
Equation (5.9) can be derived by using the Maclaurin series of the functions 

c0s-l (x(~s)-’”>, s = n, m, contained in tnm(x> when only two first terms in each series 
are taken into account. The two first terms provide us with the required accuracy. We 
obtain 

+ J 2  min(n,m) 

dx Hik)  ( x ,  m ) ~ , ,  ( x )  

(5.10) 

where 

and 

Using the parity properties 

Hbk’(-x, m ) = H i k ) ( x ,  m )  and Y, , , , , ( -X )= -Y , ,~ (X )  

( 5 . 1 2 )  

and choosing the second form of the function K,,(x):  

m-n-1)/2 
Knm ( x >  = (-1 >‘ sin ynm(x> 

we obtain immediately that the odd matrix elements are identically equal to zero: 

s = 0 , * 1 , * 2 , . .  . . ( 5 . 1 3 )  

This relation corresponds to the fact that the original Hamiltonian (2 .2a) ,  the trans- 
formation function f(x) (2.9) and the oscillator functions (L:(x) are even functions 
with respect to the variable x .  

E(k) 
n ,n+Zs+ l  “0, 
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It has been shown by Biswas et a1 (1973) that the energy level ELk) of the 
anharmonic oscillator is proportional to the term n2k/ (kc1) ,  i.e. E ,  = 
Ck(A)(n +i)2k’(k+1), where n is a quantum number, Ck(A) is a function of variable A .  
Let us consider the matrix elements with n >> m (the opposite case is reduced to the 
former by the reciprocal permutation of the indices n and m).  Using the above 
remark on the form of the energy level Eik) and the integral representation of the 
B(p, v) function (Gradsteyn and Ryzhik 1963), we obtain an approximate expression 
for the matrix elements by calculation of the integral in (5.10) (n ~ m ) :  

( k  1 

(5.14) 

where 

(k + 1)’ 
uo=- 

4w’ * 

The correlation (5.14) defines the law of decrease of the matrix elements. It shows 
that lELZl+ 0 as the term ( n ~ / n ) ” ~  with the condition m 

As can be seen from (5.14) at n - m, the terms EL? are comparable with the 
diagonal elements, and the Hamiltonian matrix is not diagonal. The results we obtain 
in this case are of the same accuracy as those obtained by Halpern (1973) for k = 2. 
Finally, the expression for the energy levels is obtained in first-order perturbation 
theory by putting n = m in formula (5.10), i.e. we consider the diagonal matrix 
elements 

n, n +CO. 

U%; 

ELk’ = dx Hbk’(x, n)(2n -~’ ) -~ / ’ [1+ O(n-”]. (5.15) 
T o  

This relation can be rewritten by changing the variable x = y& as follows 

(5.16) E,, ( k )  -- - 2n J’ dx ( ~ - X ~ ) - ’ / ~ ( ~ + E , , X ) ~ ( U O + ~ ~ X ~ ) [ ~ + O ( ~ - ’ ) J  
T o  

where the explicit form of Hik)  ( 2 . 1 2 ~ )  and the following designations are used: 

2k -2  
k + l  

E,, =w&, s=- 

(k + 1)’ 
ao=- b = A w 2 - -  (k + 1)2 

4 w 2  ’ 8w2 * 

(5.17) 

We also put n +$= n. Integration in the relation (5.16) can be performed directly, and 
the result of the integration has to be expressed in terms of the hypergeometric 
function of two variables (Gradsteyn and Ryzhik 1963). But a more detailed inspec- 
tion of the properties of the hypergeometric function shows that we can use the 
approximation (1 +E,x)’ = E~x’,  which, when applied, simplifies the integration of 
(5.16). The integral is then reduced to 

1 

~ - ‘ ( 2 n ) ’ + ’ ~ w ~  1 dx (1 - X ~ ) - ~ / ’ X ~ ( U ~ + ~ ~ X ~ )  
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and after the integrations (Gradsteyn and Ryzhik 1963) we obtain 

Using the designations (5.17) and the well known relation zT(z) = T(z + 1) for the r 
functions, the matrix elements are expressed as follows: 

x [8(3k - l)Aw4k(k+1)+ (k + 1)3w-4(k+')](n +$)2k/(kc1) [I + ~ ( n - ' ) ]  
(5.18) 

where again we have used the approximate relation n i= n +;. The term ELk'(w) 
determined by formula (5.18) is the function of the parameter w. If we use the 
'stationary' condition &5',k'(w)/aw = 0 we obtain a fixed wo in the form 

W O  = (k + 1)3/4[8kA (3k - l)]-'l4. (5.19) 

The final expression for the matrix elements is obtained by substituting (5.19) into 
formula (5.18): 

k l / ( k + l )  5k+1)  
r(2k + 2  

ELk) = Y1l2[(k + 1)5k+2(2k)-2k-1(3k - 1)- ] 

[I  +o(n-')]. 1 2 k / ( k + l )  l / ( k + l )  A 
xr-l(-)(n 2k + T I  

k + l  
(5.20) 

We are now able to obtain formulae analogous to those derived by Halpern (1973), 
Mathews and Eswaran (1972) and Lakshmanan and Prabhakaran (1973). 

First, in relation (5.18) let k be equal to two, the result obtained coincides with the 
formula for the diagonal elements obtained by Halpern (1973): 

1/3 5 
E "' (w ) = r(6) (n +$)4/3(40Aws/3+27w-4/3)[1 +O(n-')I (5.21) 

24Gr($ 

where w = constant > 0. 

it follows that 
Analogous formulae (for k = 2,3)  can be obtained from relation (5.20). For k = 2, 

and for k = 3 we obtain 
-132 4 1/4 

E ' , ~ ) ( W ~ )  = ~ ( 7 )  (n +1)3'2~  ll4[1 + ~ ( n - ' ) ] .  

(5.22) 

(5.23) 

These results are similar to those obtained by Mathews and Eswaran (1972) and 
Lakshmanan and Prabhakaran (1973). 
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